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A complete theory of best uniform approximation to positive functions decaying
to zero on [0, 00) by reciprocals of polynomials with nonnegative coefficients is
presented.

1. INTRODUCTION

Let Ct (X) denote the class of all real-valued continuous functions defined
on X£; [0, co), where X is closed, I(x) > 0 on X and I(x) --+ 0 as x ...... co (in
X) if X is unbounded. Let K(X) = {p E IIn : p(x) > 0 Vx E X and
p(j)(O». 0, j = 0, 1,..., n}, where lIn denotes the class of all real algebraic
polynomials of degree ~n. Thus, K consists of positive polynomials with
nonnegative coefficients (we suppress the X whenever possible). We give
existence, characterization and (strong) uniqueness results for the problem of
best approximating functions fEet [0, co) by reciprocals of elements of K.
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In an earlier paper, Reddy and Shisha [8] showed that the closure of the
reciprocals of all polynomials having nonnegative coefficients on [0, ro) is
the set of all reciprocals of entire functions with nonnegative Taylor coef­
ficients.

Although our primary interest is [0, ro), the theory is developed for X a
closed subset of [0, ro). The assumption that X is closed guarantees that
1I/11x = max{l/(x)l: x E X} < ro for each/E ct(X).

In Section 2, we begin by establishing an existence theorem. In Section 3,
two characterization results are given assuming X is compact. These charac­
terizations are based upon certain linear functionals in Il:, the dual of Iln'

In Section 4 strong uniqueness is shown to hold when X is compact. In
Section 5 it is shown that obtaining the best approximation to IE ct [0, ro)
from K[O, ro) is equivalent to finding the best approximation on [0, bJ from
K[O, bJ, where b may be determined constructively. Combining these results
with the results of the previous two sections establishes characterization and
uniqueness for the [0, ro) problem. In Section 6 this theory is then extended
to X, a closed subset of fO, ro), and a discretization result is established.
Finally, in Section 7 some numerical examples are given

2. EXISTENCE

We begin by developing an existence theory for this problem. Note that
this requires 1I/IIx < ro and also requires a little care as it might be possible
for p to become unbounded near where I(x) is "small."

THEOREM 1 (EXISTENCE). LetlEet (X), where X is a closed subset 01
[0, 00). Then there a p* E K such that

Proof. If n =0, then l/p* is best with 1/p* =Hll/lix + infxI/(x)I),
where we have used the fact that II/l1x < 00. Therefore, assume n;;;' l.
Without loss of generality we may assume card(X) ;;;. n + 2. Let
p=infpeKII/-I/plix and let {pd~l r;;.K be such that II/-l/p/lix ",,"p.
Setting p/(x) = 2:7=0 allxi , if we can show that {all} is bounded, then by
using subsequences (relabelled) we can find p*(x) =2:7=0 atxi with
au-+at, so at;;;.O, O~i~n. Furthermore, we must have p*(x);;;'
l/(f(x)+p + 1), VxEX and IIf-l/p*lIx~p, so l/p* is best.

Therefore, let us assume that {au} is unbounded so (taking a subsequence
of {pt!, if necessary) maxiall -- 00 as /-t 00. Define qt(x) =
(maXi ali)-lpt(x) = 'Lf=o blixi

• Again, using subsequences if necessary, we
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!
J(X) __l '~"J-~lllp,

PtCx) PI

can find q(x) = r,7=o bix i with bli~ bi' °~ i ~ n, and maxi bi = 1, bi ~ 0,
o~ i ~ n. Hence q(x) >0 for x> O. For x E X\{Ol we have
p,(x) = (maxi ali) q,(x) -+ 00 as I ~ 00. Therefore, since ljp,(x) -+ 0 as 1-+ 00

and

taking the limit as I ~ 00 yields 0 <J(x) ~ p (thus p> 0), x E X\{O}. But
this leads to a contradiction since p(x) = 2jp satisfies IIJ - llpll ~ pj2 if 0 is
not an isolated point of X, whereas p(x) = Mx + (J(O»-I satisfies
III - Ilpll <P for M sufficiently large if 0 is an isolated point of X. I

In closing this section we observe that if X is unbounded and n ~ 1
then the best reciprocal approximation to lEe; (X) from K(X) is not a
constant. This is easily seen by observing that the best reciprocal constant
approximation is c* = 2/11Jllx and that for a proper choice of 8 1 ,

8 2 >0, p*(x) = c2X + (c* - Cl) will belong to K and satisfy
IIJ - l/c* 11K> IIJ - Ijp* Ilx'

3. CHARACTERIZATION

In this section we shall assume that X is compact and establish both a
"zero in the convex hull" type of characterization and a generalized alter­
nation characterization. In both cases, these results are analogous to the
characterization for approximation as developed in [2 J. In order to obtain
these results, we use specific linear functionals in II:, the dual space of IIn

with the uniform topology. Basically, two types of linear functionals playa
crucial role. They are point evaluations ex E II;, where ex< g) = g(x),
Vg E C(X), x E X, and derivative evaluations at zero e{ E II;, where e{(p) =
pUleO), Vp E IIn , 0 ~j ~ n.

Fix J E c; (X) and p E K. Then we say that e E II; is an extreme point
for I and p if either

(i) e=.ex for some xEX and lex(J-Ijp)I=II/-Ijpllx, or

(ii) e =. e{ for some j, 0 ~ j ~ n and e~jl(p) = O.

We denote the complete set of all extreme points for I and p by Xp , as
usual. In addition, we define the sign of an extreme point aCe) by

(1) aCe) = sgn(J(x) - Ijp(x» if e =. ex' or

(2) a(e{) = (-l).i+ I
.

We observe that it is not possible for both eo and eg to belong to the
extreme set ofJ and p. In fact, eo E Xp can occur only if 0 E X and eg E Xp

can occur only if 0 f/:. X (since 0 E X implies that p(O) > 0, as p E K).
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We note that any k distinct extreme points for f and p with k ~ n + 1 are
linearly independent. Also, any set of n + 2 extreme points for f and p will be
linearly dependent as n: has dimension n + 1. Finally, we observe that due
to the continuity off and p on X, it follows that Xp is a compact subset of
II:. Let

Then we have the following "zero in the convex hull" characterization
theorem.

THEOREM 2. Let fEet (X) be such that llf E K. Then p * E K gives a
best reciprocal approximation to f from K on X (compact) iff the zero ofII:
belongs to the convex hull, H(U), of U corresponding to Xp" Furthermore,
the convex combination will always consist ofprecisely n + 2 nonzero terms.

Proof (-¢:: ) By contradiction. Therefore, we assume that p * E K does
not give a best approximation to f Then, 3p E K 311f - llpll < Ilf - IIp* II.
Let p(x) = L:7=o a/xl and set pix) = L:7=o (a l + e) Xl. Since X is compact,
we select e >0 sufficiently small so that Ilf - lip ell < Ilf - IIp* II. Then, for
e{ E Xp' we have that -e{(Pe- p*) < O. Also, for ex E Xp., we have from
the inequality

that a(ex)ex(Pe- p*) < O. Thus, the system of linear inequalities e(p) < 0,
e E U, is consistent. Since U is compact (as is Xp') we have, by the Theorem
on Linear Inequalities (see, e.g., [3, p. 19]) (identifying n: and IIn with R n ),

that zero does not belong to the convex hull of U. This is a contradiction
establishing the desired result.

(::;.-) By contradiction. Therefore, we assume 0 E H(U). Again, by the
Theorem on Linear Inequalities, we have that 3q E IIn such that -e{(q) <0
for all e{ E Xp' and a(eJ exCq) <0 for all ex E Xp " Set Pe= p* + eq, where
e >0 is chosen sufficiently small so that pix) > 0 for all x E X. Now, for
e{ E X p ' we have that q(j)(O) > 0 so that p~j)(O) > O. By taking e > 0 smaller,
if necessary, we can also guarantee that p~j)(O) > 0 for all j, 0 ~ j ~ n, such
that e{ E Xp ' since p*(j)(O) >0 for these indices. Hence Pe E K.

We now claim that for e > 0 (chosen smaller yet, if necessary), we must
have that IIf - I/Pell < Ilf - IIp* II giving the desired contradiction. A
standard compactness argument gives this result since at the positive
extremals ex (i.e., a(ex) = 1) we have that q(x) < 0 so that IIp*(x) < I/pix)
and at the negative extremals IIp*(x) > Ilpix).

Finally, since n: is n + 1 dimensional, we have that the zero in the
convex hull result will hold with s ~ n + 2 terms. In order to see that it is not
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possible for this to hold with less than n + 2 terms, we simply note that for a
set S of s <n + 2 distinct elements of Xp* we can always find pEns _ I for
which e{,(p) =-1 if e{, E Sand ex(p) =a(ex) if ex E S. This follows from
the fact that the Hermite-Birkhoff problem associated with these equations is
poised (i.e., all supported blocks are even, see [1]).

We now turn to developing our generalized alternation theorem. To this
end, fix f and let p E K. We say that {eiv}~=1 U {exJ~=s+ I C X p is an
alternant of length k for f - lip provided n ~jl >j2 > ... >js ~ 0;
X s+ 1 < xs +2 < ... < Xk with

(1) jv-jv+1 an odd integer for v= 1,2,...,s-1 (if s< 1, then this
requirement is vacuous),

(2) a(ex ) = (-I}1s (if s = 0, or s = k, then this requirement is
s+I

vacuous), and

(3) a(ex)=-a(ex ), fJ=s+l, ...,k-l (vacuous if k<.s+I).
Thus, (1}-(3)~imply th;tif {e/}7=1 = {e{,<'}~=l U {ex }~=s+!' listed in this
order, then a(et+I) = -a(et) for 1= 1,..., k - 1. ~

With this definition, we have

THEOREM 3. Suppose fEe: (X) and Ilf E K. Then p* E K gives a best
reciprocal approximation to f from K on X (compact) iff f - IIp* has an
alternant of length n +2.

Proof The method of proof is to show that this alternant is precisely a
basis for the "zero in the convex hull" result of Theorem 2. The specific
proof given here is patterned after one given by B. Chalmers [2, Theorem 2,
Section 4].

(¢::) Suppose that p* gives a best reciprocal approximation to f from
K on X. Then, there exist positive constant A1*"" An+2 with L?~} Ai = 1, and
a set of n +2 distinct extremals in Xp*, {e{,<'}~= I U {exJ:~;+ I ordered as
above (i.e., n ~ jl > j2 > ... > js ~ 0, X S +1 <X s+2 < ... <X n+2) such that

(1)

in n;. Now set J Us,js-p ...,jd and I={O,I,... ,n}\J. Now apply the
linear combination (1) to the functions xh, k = s, s - I,..., 1, which yields

n+2

L )'jla(ex ) x:t = Uk!) Ah ,
jl=s+1

Applying (1) to the function x m
, mEl, gives

k=s, s-I,..., L

mEl.

(2)

(3)
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Note that (3) consists of precisely n + 1 - s equations and n + 2 - s
coefficients. Now, using the fact that det[(xnL= 11 >° for°<XI < ... <XI < 00 and -00 <PI <P2 < ... <PI < 00 (see, e.g., [4, p. 9])
and Cramer's rule we have by standard techniques (see, e.g., [3, p. 74])

f.i = s + 1,... , n + 1,

or

f.i = s + 1,..., n + 1, as Ai >0, Vi.

Next, in system (2), observe that the functions ~I(t) = x~+ l' ~2(t) =

X~+2""'~n+2-s(t)=X~+2 (use ~2'¢3'''''¢n+2-s if xs+I=O) form a
Chebyshev system for t E [0, 00). Thus,

n+2

F(t) = L {A" a(ex )} x~
,,=s+ I

can have at most n + 1 - s zeros in [0, 00) counting a zero at which F(t)
does not change sign as two zeros (for X S + 1= 0, use
F(t) = L:;;;,;+ 2 {A" aCex)} x~ which can have only n - s zeros in [0, 00).

Note that F(O) = -A s+ I a(exs+) '* O. This is the equation of (3) corresponds
to m = 0. Recall that °E X implies that js >0).

Now F(t) vanishes at t = m, mEl, for a total of n + 1 - s points. (For the
case X s+I = 0, F(t) vanishes at t = m, m E 1, m '* 0, for n - s points.) Thus,
each point of 1\{0} must be a point where F(t) changes sign and F(t) can
have no additional positive zeros. Now, since Uk!)Ah> 0 for k = s,
s - 1,..., 1 we see that for jk E J, jk+ I and jk must have an even number of
elements of 1 between them (0 is allowed). That is, j k - jk + I must be an odd
integer for k = 1,..., s - 1.

Finally, define pEiln by pU)(O)=O, jE.f\{js}' p(xJ=O,
f.i = s + 2,... , n + 2 and p(xs+ I) = 1, where p(x) = L:7=o a/xi. Observing that
{O,I,...,js-lfcI, we shall enumerate IU{js} by IU{js}={O,l,...,js'
IS+I'".,ln+l-s}' where js<ls+I<· .. <ln+l_s~n. Then p satisfies the
system

f.i = s + 1,..., n + 2. (4)

Solving for aj , by Cramer's rule and using the fact that det[(xjj)L=l] >°for°<XI < ... <XI < 00, -00 <PI < ... <PI < 00 again, we see, after js
column interchanges in the numerator determinant, that sgn(aj ) = (-ly'.
Now, applying (1) to p we find that

-AJ• Us!) aJ. +As+la(ex )=0,
S S "s-t-l
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or that a(ex ) = (-1 )is. This shows that the extreme points of the "zero in
't l

the convex null" characterization form an alternant of length n + 2 for
f 1/p*.

(=» Conversely, let {eiv}~=l U {eX):~~+l be an alternant of length
n + 2 for f - l/p*. Then, since II: is n + 1 dimensional and any n + 1 of
the above extremals form a basis for II: we have that 3 constants
81"'" 8n + 2 , all not zero, such that

s n+2

I 8v(-eio)+ I 8ua(ex) ex. = 0
v=1 u=s+1

(5)

in II:. Define J and I as above and apply (5) to x m, m = 0,1,..., n to obtain

and

n+2

L 8/A a(ex) xl/Ak = 8jkUk!)'
u=s+ 1

k=s,s-1,..., I,

mEl.

(6)

(7)

Now, as above, (7) implies that sgn(8/Aa(ex))=-sgn(8/A+la(eXHI))'
/l = S + 1,..., n + 1. Since a(ex ) = -a(ex.+) for /l = S + 1,... , n + 1 we have
that sgn (J /A = sgn 8/A +I' /l = S + 1,... , n + 1. Next, for the special function p
defined by p(ik)(O) = 0, k = S - 1,..., 1, p(xu ) = 0, /l = S + 2,..., n + 2 and
p(xs+ l ) = 1, we get, after applying (5) to thisp, that (JS+la(eX ) = 8spUsl(0).

• • . $+1

Since a(exs+) = (-IYs and sgnp(Js)(O) = (-IYs from above, we have that
sgn(8s +J = sgn(8s)' Finally, by repeating the F(t) argument appearing in the
first half of this proof we have that sgn 8v = sgn 8v _ 1 for v = S, S - 1,...,2 as
desired. Thus, 8i *' 0, i = 1,2,..., n + 2, and all are of the same sign. Hence
(using a suitable normalization), we have that the zero of II: belongs to the
convex hull of U, U corresponding to Xp" as above (in fact, we know a
specific convex combination from U for 0). Thus, p* E K gives a best
reciprocal approximation to f from K on X as desired. I

We observe that in an alternant of length n +2 for f - l/p*, we must
have s <n, so that there will always exist at least two standard extremals
and normal alternation between them; if p* is not a constant and 0 E X then
s <n - 1, so there will be at least three standard extremals and normal alter­
nation between them.
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4. UNIQUENESS

Best approximations in our setting are unique; in fact, the zero in the
convex hull theorem enables us to prove strong uniqueness. Lipschitz
continuity of the best approximation operator then follows as in [3, p. 82]. In
this section we shall write II . II for II . Ilx·

THEOREM 4. Let fEet (X), where X is compact, and let p* E K satisfy
Ilf - l/p* II = infpEK Ilf - l/pll· Then there exists a positive constant Y= y(f)
such that

for all p E K.

Proof Without loss of generality we may assume /If - l/p*11 > 0, since
otherwise the theorem holds with y = 1. For p E K, p"= p*, define

Ik-~II-I/J-?-II
y(p)~ II>pl. II .

Assume (by way of contradiction) that there exist a sequence {pd c.;; K,
h"= p*, with Y(h)-+O. Then III/hil is bounded (otherwise Y(h) + 0), and
thus IIf - l/hll- /If - l/p* /I -+ 0 (otherwise y(pd + 0), so from the proof
of Theorem 1 we have that II h II must be bounded. By Theorem 2 there is a
set of n + 2 distinct extremals

and a set lA.;} 7~"f of positive constants such that

Now let p E K satisfy

v= 1,..., s,

and

p. = s + 1,..., n + 2.
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Then from
S n+2

L A,,(-elo(p)) + L Al'a(ex~) exJp) = °
,,=1 I'=s+ 1

and the fact that Ai >0 for i = 1,..., n + 2, we get

37

and

elo(p) = 0,

ex (p) = 0,
~

v = 1,..., s,

IJ = s + 1,..., n + 2.

But any n + 1 of these conditions imply that p == 0, since the associated
Hermite-Birkhoff interpolation problem is poised. Thus, if p E K satisfies
pi=. °and -elo(p) ~ 0, v = 1,..., s, then for some OJ with s + 1 ~ OJ ~ n + 2
we must have a(ex ) ex (p) > O. Let

w w

P E K, Ilpll = 1 and -elo(p) ~ 0, v = 1,..., s} > O.

Then for alllJ = s + 1,..., n +2, we have

So for some OJ = s + 1,... , n + 2, we have

Now for each k select Yk E X such that
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Then,

so that

Hence,
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Y(h) >P:(Yk) Pk(Yk) . c -fr 0,
P (Xw ) Pk(Xw )

as IIhll and III/hil are bounded independent of k and X is compact. This
gives us our desired contradiction, completing the proof. I

5. ApPROXIMATION ON [0,(0)

We now state and prove a central result which shows that for n> 1,
approximation on [0,(0) with reciprocals of elements of K is completely
equivalent to approximation on [0, b] for some b >O. This result allows us
to apply the theory of the previous sections to this problem. Also, this proof
can be made contructive, giving a procedure for calculating b.

THEOREM 5. Let fEet [0, (0) and assume n >1. Then there exists
b> O,p* EK[O, oo)=K such that

II 1 II II 1 II II I IIf-- = inf f-- = inf f--
p* (O,b] peK P IO,b] peK P IO,co)

I'
I II= f-- =A

p* IO,co) co'

Proof. We can assume I/f E K. For each 0 < b ~ 00, choose Pb E K
satisfying

II 1 11 . I' 1 IIf-- - mf f-- =Ab •
Pb [O,b] peK P [O,b]

Assume Pb cannot serve as Pco for all finite positive b. Then by uniqueness of
such Pb' Pco cannot serve as Pb for any finite positive b. Hence for all
0< b < 00,



RECIPROCAL APPROXIMATION

Then for some Yb > b,

, 1 I' 1 IIllm--= f--
b~oo h(b) Poo 10,(0)'

Write Pb(X) = L:j=o ajbxi. Then if Y > 0 is given, and b> y,

39

as b -t 00.

Further aM <; M, some M < 00, for all b > 0 as Ilf - l/poo 11[0,(0)< ! Ilfll[o,oo),
Choose a sequence B of values for b such that as b -t 00 through B, aOb -t c.
Then we see, as c is independent of y, that

1, Ilf 1 II II 1 II1m -- - f--
b~OCJ Pb [Os] C [O,Y]
bEB

Then using the last inequality in (8), we see

for each y > O.

II 1 II l' II 1 II II 1 IIf-- & 1m sup f-- & f--
c IO,y! "<: b~oo Pb [O,b] "" P oo [O,ro)

bEB

for each y >0, We deduce that

Ik-+t,OCJ) = Ik-p~ t,W)
so that a constant c is a best approximation; as after Theorem 1, this is
impossible, I

Remark. A constructive proof can be given for calculating b in which at
most four best reciprocal approximations need be calculated. A copy of this
is available upon request.

COROLLARY. The best approximation tofE ctlo, (0), for n ~ 1, exists,
is unique, and is characterized by the alternation of Theorem 3,

Note that strong uniqueness need not hold in the [0, (0) setting. For
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example, if n = 3, p*(x) = x + 1 is readily seen to be the unique best
reciprocal approximation to f(x) by the standard alternating theorem where
f(x) is defined to be piecewise linear on [0, ~ ] with vertices
(vI4, (I + vl4 )-1 - ±(_I)V), v = 0,...,4 and (~, (1 +D- 1). For x> Lf(x) is
defined to be (x + 1) - J. Setting pk(X) = 1 +x +x kIk, one can show that
strong uniqueness fails to hold in this case.

6. DISCRETIZATION RESULTS

Suppose X is a nonvoid closed subset of [0,00). Define IXI = SUPXE!O.OO)

infyEx Ix yl = density of X in [0,00). Then we have

THEOREM 6. If f E C:(X), n?: I, then there exists a b >° and a
p* E K = K(X) such that

II 1 II' II 1 II II 1 II II 1 IIf-- = inf f-- = inf f-- = f--
I p* [O.b)nX pEK I P [O.b)nX pEK P X P* x·

Proof The proof follows the proof of Theorem 5 where each interval is
replaced by its intersection with X, and where each point mentioned is in X.

COROLLARY. The best reciprocal approximation to fEe: (X) on X, for
n?: I, exists, is unique, and is characterized by the alternation of Theorem 3.

Now, let n> 1, fEe: [0,00) and Ilf E K[O, 00). Define Ab , Aoo as in
Theorem 5 (note Aoo >0) and define

A: = pl~fx) 1\1- ; lL.blnx'

A~ = pl~fx) 1\1- ; Ilx,
I/pf = best approximation to f on [0, bJ nx where pf E K(X),

Ilp~ = best approximation to f on X where p~ E K(X),

I/poo = best approximation to f on [0,00) where Poo E K[O, 00),

b*=inf{bER:Ab Aoo },
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bi = inf{b E IR: 2: = 2~}.

41

THEOREM 7. Let f E Cri" 10,00), llf E KlO, 00), n ~ 1. Suppose
X S; 10, 00) with IXI <0 for some 0> O. Then

(i) For any e >0, bi E (b* - e, b** + e), for all 0> 0 sufficiently
small. (Thus, ifb*=b**, then b;-+b* as 0-+0.)

(ii) For every 0> 0, sufficiently small, there exists a constant y
independent of X such that

Ilf-~11 -llf--1 II ~w(o)+yo,
P oo 10,(0) I Poo [0,(0)

where w(o) = maxX,YE[O,oo),lx_YI <;:8If(x) - f(y)l.

(iii) 1/p~ converges uniformly to 1/poo on [0, 00) as 0 -+ 0.

Proof. (i) (by contradiction) Suppose there exist sets \X/}f;,1 with
IX/I < 0/, 0i -+ ° and bi. E (b* - e, b* *+ e) for some e >° fixed. For
notational convenience, let p/ = p%i, br = bi. and 2~ = A~ so that p/ gives

x. I

the best reciprocal approximation to f on 10, bi1n X/ and Xi from K(Xi ). If
Pi = L:7=o aux/ then by arguments similar to those of Theorem 1 we have
that {ali} is bounded, so going to further subsequences, if necessary, we have
that au -+ a/ as i -+ 00 for °~ I ~ n. Set p(x) = L:7=o a/xl. Again, using
arguments as in Theorem 1, it can be show that P == Poo' Thus, p is not a
constant so choosing a nonzero coefficient ak with k ~ 1 we must have
aki ~ ak l2 for i ~ i1 (say) implying there exists c ~ b* such that llpi(x) ~
Aoo/2 and f(x) ~ Aoo/2 for all x ~ c. By the uniform convergence of {p;l to
Poo on 10, b*l and the assumption that IX/I-+ 0 it follows that for i
sufficiently large A~ ~ ~Aoo' Thus, for i sufficiently large we have that b/*
~ c. Therefore, {b1} is bounded.

Choose a subsequence (note relabelled) so that bt -+ b (say), and choose i 2

so large that bi E 10, L] for all i ~ i2 , where L = max(b* * + e, b) + 1. Then

inf I\\f ~II 1=,1.00 and inf lllf-~II 1=A~, i~i2'
pEKIO,co) 1 P [O,L] \ pEK(X i) P [O.L) n.J)

Now, by the uniform convergence of {Pi} to Poo on [O,L] we have that
A~-+Aro as i-+ 00.

Now suppose b~ b** + e. Then, we must have that If(b) - 1/pro(b)1 < Aoo
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by the definition of b**. Thus, there exists I] >° such that for all i
sufficiently large, If(Y) - IIPi(y)1 <A~, Vy E (b -I], b +l])nXi ,

contradicting the fact that bt E (b -I], b + 1]) n Xi for all i sufficiently large.
On the other hand, suppose b <. b*- e. Then, by the definition of b* we

have that

a=inf \llf-.!-11 :PEK[O,oo)1 <,.100'I P IO.b H/2} \

However, this implies Ai <. a for all i sufficiently large (so that bt <. b + e12)
which contradicts the fact that Ai ---> ,.100' This contradiction then proves part
(i) of the theorem.

For parts (ii) and (iii), since bi E [0, b** +1] for all b >°sufficiently
small, we have

II 1 IIA = f-- ,
00 P oo IO.b**t I} II

I IIA~= f-x- .
Poo IIO.b**+111lX

Parts (ii) and (iii) then follow since the coefficients of p.~ are bounded and
p~ is bounded away from zero on [0, b** + 1] so that arguments similar to
those in [3, pp. 84-88] can be applied. I

We give the following example.

EXAMPLE. Definef(x) = l/(x + 1) + g(x), where

3/16, x=O,
-3/16, X= 1,

g(x) = 3/16, x=2,
-3/16, x=3,
0, x,>4,

and g(x) is linear in [0,1], [1,2], [2,3] and [3,4], sof(x)E ct[O, (0). Let
n = 1. Then l/poo = 1/(x + 1), ,1.00 3/16, b* = 2, b** = 3.

(a) If Xi [0, 00 )\(3 - 1/2i, 3 + 1/2i), i,> 1, we have l/p~ =
1/(x + 1), bi = 2, for all i-

1

(b) If Xi = [0, 00 )\[0, 1/2i), i,> 1, we have l/p~ = 1/(x + 1); bi = 3,
for all i. 1

Using other choices of Xi' we can make bi < 2 or bi> 3.
, 1

7. NUMERICAL EXAMPLES

We show here some examples which were run on a CDC Cyber 172 in
single precision (approximately 15 digits of accuracy). The program used
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was a combined First Remes-differential correction algorithm program
(see [5-7]) with minor changes in two subroutines to force 0 ~ qj ~ 1
instead of -1 ~ qj ~ I. The computed approximations of the form
Pl!(qO +q1x +... +qn xn ) were then normalized by dividing all coefficients
by PI'

EXAMPLE 1. Letf(x) = ((x + 1)/2) eO-x1/2 and n = 2. This function has
a maximum at x = 1, with f( 1) = 1 (not the type of function that should be
approximated by this sort of theory, in general). Let X = {O.OIl: 0 ~ I < oo}.
Taking b1 = 1, the computed approximation on [0, 1] n X (101 points) is

I 1
PI(X) = 1.09627448'

with error norm )., = 0.08781968 and alternant {e~, e~} U {eo' ed (in
particular, p;'(O) = 0, p;(O) = 0, f(O) = I!PI(O) = -0.08781968, f(I)­
Ilpl(l) = 0.08781968). Now using Newton's method to approximate a
solution of j(x)-0.08781968 =0, we get x=9.105 and
f(9.11) = 0.08763095. Since f is decreasing for x;:: 1, we take b2 = 9.11.
The computed approximation on [0,9.11] n X is

1 1

P9.1I(X) 1.06281016 + 0.04620946x2

with error norm ,.1,9.11=0.11654117 and alternant {e~}U{eo,e1.55,e9.ld.

This is not best on [0,00), sincef(9.12)-llp9.lI(9.12)=-0.11654154. We
observe that P9.l1 is not a constant, so searching for b3 (which will be the
required b here) with I!P9.1I(b3) ~ ).,9.11 (which can be done by solving
Ilp9.1I(b3) = ,.1,9.11' the solution is 12.755), we take b3 = 12.76. The
computed approximation on [0,12.76] nx is

I 1
P12.76(X) - 1.06281009 + 0.04620952x2

with error norm ).,12.76 = 0.11654123 and alternant {e~} U {eo' e1.55' e9• 12 };

this is best on X. By comparison, if we remove the nonnegativity restriction
on the denominator coefficients, the best computed approximation on X is
(1.21587901- 0.33317116x + 0.12629914x2)-1 with error norm
0.03835538, achieved at the extreme points 0.44 +, 1.97 -, 4.62 +, 11.92 -,
where the sign indicates the sign off lip.

EXAMPLE 2. Letf(x) = (In(x + 2»- t, n = 2. We first tried X = {0.011: I
integer, 0 ~ I < co} as above; the computed approximation on [0, 1] n X
was (0.69955039 +0.41523483x)-1 with eror norm 0.01320544 and
alternant {e~}U{eO,e.35,ed. Solving f(x) = 0.01320544 we got
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x;:::; e75
.
7

- 2;:::; 7.52 X 1032 which is too large for practical computation.
Replacing bl by 100, and replacing X by X' = {I: I integer, 0 ~ I < oo} to
save computer time, our computed approximation on [0, 100] n X' was
(6.78068253 +0.17583824x)-1 with error norm 0.16176462 and alternant
{e~}U{eO,e2,eIOO}' Solving f(x)=0.16176462 yielded x;:::; 481.9; the
computed approximation on [0,482] nx' was (0.78105035 +
0.17526786x)-I with error norm 0.16236785 and alternant
{e~} U {eo' ez , em}. This is the best approximation on X'. Having found an
approximate location for b*, we refined the approximation using
[0, 130J n X (13,001 points); the computed approximation after 22.4 second
execution time was (0.78109464 +0.17557370x) I with error norm
0.16244044 and alternant {e~}U {eo' e1. 84 ' em}· This we verified to be best
on X by directly checking the error on [0,469.59) and noting that f(x),
Ijp(x) <0.16244044 for x> 469.59. By comparison, removing the
nonnegativity restriction on the denominator coefficients yielded
(0.75913982 +0.21799463x - 0.00154261xz) as the best approximation on
[0, 130)nX, with error norm 0.12541465 achieved at the extreme points
0+, 1.50-, 44.82 +, 130 -. This is not best on X* due to pole near 144.72.
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